Evolution and Explosion of Very Massive Primordial Stars
نویسندگان
چکیده
While the modern stellar IMF shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars (& 100M⊙) may have been abundant in the early universe. Other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. After central helium burning, they encounter the electron-positron pair instability, collapse, and burn oxygen and silicon explosively. If sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. They also eject up to 50M⊙ of radioactive Ni. Stars less massive than 140M⊙ or more massive than 260M⊙ should collapse into black holes instead of exploding, thus bounding the pair-creation supernovae with regions of stellar mass that are nucleosynthetically sterile. Pair-instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.
منابع مشابه
Evolution and Nucleosynthesis of Very Massive Primordial Stars
We investigate the evolution, final fate, and nucleosynthetic yields of rotating and non-rotating very massive stars (VMS) of zero metallicity. First we address the issue of mass loss during hydrogen burning due to vibrational instabilities. We find that these objects are much more stable than what was found in previous studies of VMS of solar composition, and expect only negligible mass loss d...
متن کاملDust Formation in Very Massive Primordial Supernovae
At redshift z ∼ > 5 Type II supernovae (SNII) are the only known dust sources with evolutionary timescales shorter than the Hubble time. We extend the model of dust formation in the ejecta of SNII by Todini & Ferrara (2001) to investigate the same process in pair-instability supernovae (SNγγ), which are though to arise from the explosion of the first, metal free, very massive (140-260 M⊙) stars...
متن کاملLow - Metallicity Star Formation : From the First Stars to
Metal-free stars are assumed to evolve at constant mass because of the very low stellar winds. This leads to large CO-core mass at the end of the evolution, so primordial stars with an initial mass between 25 and 85 M are expected to end as direct black holes, the explosion energy being too weak to remove the full envelope. We show that when rotation enters into play, some mass is lost because ...
متن کاملCan very massive stars avoid Pair-instability Supernovae ?
Very massive primordial stars (140 M < M < 260 M ) are supposed to end their lives as pair-instability supernovae. Such an event can be traced by a typical chemical signature in low metallicity stars, but at the present time, this signature is lacking in the extremely metal-poor stars we are able to observe. Does it mean that those very massive objects did not form, contrarily to the primordial...
متن کاملMassive Star Evolution Through the Ages
We review the current basic picture of the evolution of massive stars and how their evolution and structure changes as a function of initial mass. We give an overview of the fate of modern (Pop I) and primordial (Pop III) stars with emphasis on massive and very massive stars. For single stars we show how the type of explosions, the type of remnant and their frequencies changes for different ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001